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Nonlinear simulation with a simple resistive magnetohydrodynamics model is used to investigate
the stabilization of magnetic fluctuations in reversed-field pinch plasmas subject to pulsed-parallel
current drive. Numerical results are diagnosed with computations of nonlinear power transfer and by
evaluating sequences of profiles for linear stability. Results show that poloidal electric field pulsing
promptly affects the exchange of energy between the mean profiles and both core-resonant m=1
fluctuations and high-axial-wavenumber fluctuations. Linear computations show that slight changes
in edge profiles are sufficient to alter the stability of the marginal state. There is a slight delay in the
response of energy exchanged among fluctuations, which reduces the m=0 fluctuations. Loss of
dynamo effect as fluctuation amplitudes decrease leads to nonlocal pulse penetration that enhances
pinching when toroidal drive is maintained. Reducing toroidal drive together with the application of
poloidal electric field avoids pinching and maintains the stabilizing effect for a greater period of
time. © 2008 American Institute of Physics. #DOI: 10.1063/1.2937770$

I. INTRODUCTION

The magnetic field in reversed-field pinch !RFP" con-
figurations is strongly sheared from the magnetic axis out-
ward and is largely poloidal over most of the plasma volume.
Toroidal electric field from standard Ohmic induction there-
fore drives current in the plasma core while bypassing the
edge region. Current-gradient-driven instabilities result from
this spatially preferential drive, and saturated fluctuations
sustain reversed toroidal field in the plasma edge1 through a
magnetohydrodynamic !MHD" dynamo effect. The nonlinear
interaction of resonant fluctuations with different helicity
leads to regions of stochastic magnetic topology, allowing
parallel heat flow to carry thermal energy from the core to
the edge. The transport of energy results from the correlation
of parallel heat flow fluctuations and radial magnetic pertur-
bations, and this process, i.e. the correlated product, has been
measured2 in the Madison Symmetric Torus !MST".3 While
standard Ohmic drive produces configurations with a peak
temperature of hundreds of eV, the energy confinement is
low relative to the ideal situation of nested magnetic flux
surfaces.

The existence of tearing-mode stable RFP equilibria4,5

allows a direct path to better confinement through current-
profile control if suitable current-drive techniques can be ap-
plied. Many successful demonstrations of fluctuation sup-
pression have been achieved in MST through transient
pulsing of the inductive electric field,6–8 leading to order of
magnitude increases in energy confinement time.9–12 The ear-
liest experiments used pulses of poloidal electric field alone.
However, the best performance is achieved when the toroidal
electric field is simultaneously reduced12 so that the change
in applied electric field remains parallel to the edge magnetic
field. The experiments have therefore been labeled “pulsed

parallel current drive” !PPCD". Profile evolution, recon-
structed through MHD equilibrium calculations, has shown
that dynamo-free conditions are achieved in some
experiments.7,8 The nonzero component of the applied poloi-
dal electric field reduces the toroidal magnetic flux in the
system, so the conditions are transient. In fact, reducing both
toroidal electric field and toroidal flux is in common with the
proposed self-similar decay approach13 to creating tearing-
stable RFP plasmas and with part of the oscillating field
current-drive cycle.14

The nonlinear aspects of combining standard inductive
drive with current profile control in RFPs are considered
computationally in Ref. 15 for sustained DC helicity injec-
tion in the resistive MHD model without pressure. A study
with a localized ad hoc source of parallel current finds that
auxiliary drive located midway between the core and edge of
RFP profiles excites edge-resonant modes while stabilizing
core-resonant modes. However, complete suppression of
fluctuations is obtained through auxiliary drive located just
inside the reversal surface in combination with reduced
Ohmic drive.16

Nonlinear modeling specific to PPCD has shown that the
evolution of the profile includes a significant pinching effect
when the toroidal drive is not reduced.17 The stabilization of
fluctuations and subsequent loss of dynamo leads to nonlocal
penetration of electric field after the pulse is applied in these
three-dimensional computations. A study with a reduced set
of modes but finite pressure emphasizes the potential role of
magnetic shear when the pressure gradient adds to the avail-
able free energy.18 Another study uses a quasilinear-like ap-
proach of applying pulsing to a one-dimensional evolution of
the equilibrium while monitoring linear stability. The com-
putations use realistic values of Lundquist number !S
=!r /!A, where !r is the resistive diffusion time and !A is the
Alfvén propagation time" and allow a vacuum gap to open
between the plasma and the wall when the pulse is applied.
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The resistivity profile is nearly uniform through the plasma
region, but increases near the wall. The modification in edge
current by the applied poloidal electric field is found to alter
the equilibrium to a sufficient degree to make resonant tear-
ing modes stable.19 In Ref. 17, it is noted that an edge current
is absent in three-dimensional simulations that show nonlo-
cal pulse penetration due to dynamo loss.

The goal of the present work is to analyze MHD stabi-
lization through PPCD consistent with profile evolution that
occurs directly from the pulse and indirectly through dynamo
loss. We apply three-dimensional numerical computations to
the pressureless resistive MHD model subject to boundary
conditions that represent the poloidal pulse either alone or
together with a decrease in the toroidal electric field. More-
over, we use computational diagnostics of power-transfer be-
tween the evolving large-scale fields and the fluctuations,
and among groups of fluctuations, to investigate how fluc-
tuation suppression occurs while nonlinear effects are sig-
nificant. Similar diagnostics have proven to be very useful in
describing the MHD dynamo effect in standard RFP
conditions.20 To augment the nonlinear power analysis, we
also investigate the linear stability of the evolving profiles.
While linear analysis cannot provide a full description of the
nonlinear system, it helps us distinguish the part of the pro-
file evolution that is responsible for the change in power
transfer from the mean fields to the fluctuations. Here, we
will show that a very slight increase in edge current density
immediately after application of the pulse is sufficient to
alter the flow of power through the saturated fluctuations.
While this is similar to the conclusions of Ref. 19, we show
that it is also consistent with pinching due to loss of dynamo,
which can dominate the subsequent profile evolution, as dis-
cussed in Ref. 17. The reduction in loop voltage, which is
necessary to optimize performance in MST, is found to
counter this pinching, maintaining a stable profile throughout
the pulse.

The second section of this paper describes the MHD
system used in our study, the boundary conditions used to
apply PPCD transients, and the computational diagnostics.
As a benchmark case, the third section considers the classical
evolution of cylindrically symmetric profiles subject to puls-
ing without the inclusion of instabilities. The fourth section
considers PPCD and evolution with a system that is limited
to have only one resonant fluctuation. This simplifies the
dynamics by eliminating coupling among groups of fluctua-
tions and helps illustrate how suppression of dynamo activity
leads to nonlocal pulse penetration. The fifth section de-
scribes analysis of PPCD in a full RFP simulation with non-
linear interaction. Conclusions from this study are provided
in the sixth section.

II. PPCD MODELING

The primary models of PPCD used in this study solve
the time-dependent nonlinear resistive MHD equations in the
limit of vanishing plasma pressure. Similar modeling has
proven valuable for the RFP configuration in describing the
MHD dynamo resulting from current-driven modes,21 non-
linear cascading processes,22,23 nonlinear power transfer,20

and increasing intermittency as S is increased.24 The spec-
trum in these simulations is dominated by multiple m=1
fluctuations that are resonant in the core, where m refers to
the azimuthal or poloidal Fourier index, and n refers to the
axial or toroidal index in helical ei!m"−2#nz/Lz" components. In
addition, while computational practicalities limit dimension-
less parameters relative to laboratory conditions, applying
the S-scaling found from computation24 to the 3% simulated
fluctuation level agrees reasonably well with the 1% level
found in experiment.25 This simplified resistive MHD system
in MKS units is

$% #

#t
V + V · $V& = J % B + $ · $& $ V , !1"

#

#t
B = $ % %V % B −

'

(0
$ % B& , !2"

where V is the plasma flow velocity, B is the magnetic field,
& is the viscous diffusivity for a basic kinematic stress, and
' /(0 is the magnetic diffusivity.

In this model, the mass density $ is considered to be
constant; however, compressibility is not constrained. This
leads to known errors in momentum conservation and energy
conservation, where the loss rates per unit volume are
$V$ ·V and $V2$ ·V /2, respectively. The scaling argument
provided in the Appendix indicates that both errors are small
when S is large, and this has been confirmed in simulation
results. While it is possible to solve more comprehensive
models of PPCD than Eqs. !1" and !2", this system mini-
mizes the number of nonlinearities and permits investigating
a larger number of transient events for a given amount of
computational resources. Simulations of PPCD that include
continuity and anisotropic thermal conduction26 have shown
similar stabilization effects.

The simplified model is solved in cylindrical geometry
using the NIMROD code.27 Without pressure-driven modes,
toroidal curvature does not have a strong influence on the
MHD activity, and a comparison of RFP simulations in cy-
lindrical and toroidal geometry finds similar spectra in stan-
dard multihelicity conditions.28 The study reported here uses
the finite Fourier representation for the axial direction of the
cylinder and high-order finite elements for the radial-
azimuthal plane. Thus, our simulated fluctuations are easily
decomposed by toroidal index n. Most of our computations
use S=8000 and Pm=1, where Pm=(0& /'. The nominal
values of magnetic and viscous diffusivity are multiplied by
the function #1+ !'10−1"!r /a"10$2 to create a hollow profile
in radius. A numerical convergence study of the nonlinear
fluctuation level in RFP simulations in these conditions uses
a 24%32 mesh of elements, increasing the degree of the
polynomial basis functions from bicubic to biquintic to im-
prove resolution. There is increasingly detailed agreement in
the fluctuation level history with a discrepancy of less than
3% over the PPCD timescale used in our study.29 The results
reported here use biquartic elements. The number of axial
Fourier components is intentionally varied among different
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sets of simulations to control the importance of nonlinear
interaction. The full RFP simulations described in Sec. V
include 0)n)42.

The weak form of the equations solved by the code is
readily adapted to applying the PPCD transients. The weak
form of Faraday’s law includes the surface term (dS%E ·c,
where c is a vector test function and E represents any applied
electric field that is tangent to the surface.27 In MST, the
poloidal drive is applied through a sequence of pulses.12 In
our simulations, we average this into a square pulse that
removes 20%–25% of the toroidal magnetic flux over the
pulse, as in the experiment. The duration of the pulse, hence
the magnitude of the applied E", is scaled according to non-
linear dynamics such as the sawtooth period,24,25 roughly
S−0.4 or S−0.5. Thus, a pulse duration of approximately
0.007!r in the MST experiment at S)106 is scaled to
0.045!r in our simulations at S=8000. When including pro-
gramming of the axial electric field, Ez at the wall is de-
creased to 0 over the same time that the poloidal current
drive is applied. However, as discussed below, a number of
our simulations consider the poloidal drive in isolation to
distinguish different effects.

Since there is no geometric variation in the axial coordi-
nate, quadratic quantities may be uniquely decomposed by
Fourier index. This includes magnetic energy and kinetic en-
ergy with the assumption of fixed uniform mass density. For
all indices except the symmetric n=0, there is no flux of
energy through the plasma surface, and apart from the error
noted earlier, the modal energy evolves as

#

#t
* !+Bn+2/(0 + $+Vn+2"dVol

=* #Vn
* · !J % B"n − Jn

* · En − $&!$Vn
*"T:$Vn$dVol

+ c.c., !3"

where the asterisk denotes the complex conjugate operation,
and “c.c.” indicates the complex conjugate of the preceding
term.30 As in Ref. 20, it is useful to decompose the first two
terms on the right side of Eq. !3" into interactions with the
n=0 component, i.e., the “mean,” hereafter indicated by ,-,
and interaction with other nonsymmetric components,

!*MF"n =* #− ,J- · Vn
* % Bn − ,V- · Jn

* % Bn$dVol + c.c.,

!4"

!*MC"n =* #Vn
* · !J % B"n + Jn

* · !V % B"n$dVol + c.c., !5"

!*D"n = −* #'Jn
* · Jn + $&!$Vn

*"T:$Vn$dVol + c.c., !6"

where subscripts indicate mean-field interaction !MF", cou-
pling among modes !MC", and dissipation !D". Note that
although terms that are linear in ,V-, ,B-, and ,J- are in-
cluded in Eq. !3", they are implicitly excluded from the qua-
dratic factors in parentheses in Eq. !5". The three powers are

recorded in our nonlinear simulations, and some of the fig-
ures presented later sum contributions over representative
groups of fluctuations.

A complementary diagnostic performs linear stability
analysis on mean-field profiles taken from the nonlinear
simulations at various times during a transient. Technically,
,J-% ,B-%0 in these profiles, but for 3% fluctuation levels,
the dominant discrepancy from correlated fluctuations is nec-
essarily small. We also emphasize that the linear computa-
tions are not predictions of nonlinear evolution. In addition
to power from nonlinear coupling !*MC", nonlinear effects
distort the fluctuations from the linear eigenmode profiles,29

so the mean-field transfer !*MF" is not the same as a quasi-
linear computation. Nonetheless, linear analysis of the evolv-
ing mean profiles indicates the change in free energy avail-
able to drive fluctuations. Moreover, since the linearly
independent solutions used to construct eigenmodes are
found from initial-value computations in radius, deviations
in the ordinary differential equation solutions indicate the
radial location where the PPCD pulse penetration effects a
change in stability. We have found this to be much more
informative than comparing profiles of the energy density
transfer to the mean field; i.e., the integrand in Eq. !4".

Our linear analyses solve the zero-beta, helical flux form
of Newcomb’s equation for outer ideal regions,4

d2+

dr2 = +.m2 + k2r2

r2 −
m4 + 10m2k2r2 − 3k4r4

4r2!m2 + k2r2"2 − ,2

+
d,

dr
%m,Bz- + kr,B"-

m,B"- − kr,Bz-
& +

2,mk

m2 + k2r2/ , !7"

with the ei!m"−kz" convention, where +=r3/2Br / !m2+k2r2"1/2,
k=2#n /Lz is the axial wavenumber, and ,
0(0,J- · ,B- / ,B- · ,B- is the normalized parallel current den-
sity. The mean profile from a nonlinear NIMROD simulation
can be transferred to an eigenvalue code that solves Eq. !7"
for initial-value !in r" problems within regions that are
bounded by the axis and the rational surface or by the ratio-
nal surface and the wall. !All of the linear computations con-
sidered here have only one rational surface at most." Only
one nontrivial solution adjacent to the axis satisfies regularity
at r=0. This solution is smoothly extended into the next
outer region using Robinson’s comparison equation.4 A sec-
ond linearly independent solution with +!rs"=0 and
d+ /dr+rs

=1 is computed for rs)r)a, where rs is the radius
of the rational surface and a is the wall radius. The two
solutions are combined to satisfy boundary conditions at the
wall, and this provides the eigenvalue. With +c denoting the
solution that is continuous and smooth at rs and +i denoting
the second solution extended to satisfy +i!r"=0, 0)r)rs,
the tearing-mode eigenvalue and stability parameter that
makes the combined solution equal to zero at the wall is

-! =
+d+/dr+rs+

− +d+/dr+rs−

+!rs"
= −

+c!a"
+i!a"+c!rs"

. !8"
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Since this is only meaningful in ideally stable conditions,
where +c!rs".0 and +i!a".0, the sign of +c!a" determines
the tearing-mode stability for the wavenumber pair !m, n"
under consideration. Thus, radially localized changes in the
profile that bend +c!r" toward the +=0 axis can be inter-
preted as destabilizing, while changes that bend +c!r" away
from the axis are stabilizing, as discussed in Ref. 16.

III. PROFILE EVOLUTION WITHOUT FLUCTUATIONS

When PPCD is successful at removing fluctuations, the
system becomes an evolving one-dimensional !1D" profile.
For comparison, it is therefore useful to consider 1D profile
evolution in the conditions of our complete simulations be-
fore considering the role of fluctuations. The computations
are similar to the profile evolution considered in Ref. 19,
except that we use lower S-value, and an effective small flux
of mass prevents a vacuum region from opening. The com-
putations are started from an Ohmic equilibrium with pinch
and reversal parameters of /=1.56 and F=0.01, respec-
tively, where /0(0aIz /20z, F0#a2,Bz!a"- /0z, Iz is the
axial current, and 0z is the axial flux. They are initially
driven by axial electric field alone.

When a pulse of poloidal electric field is applied without
changing axial electric field, the initial effect in the profile is
an increase in parallel current density near the edge. It propa-
gates inward initially due to the large resistivity. However,
the toroidal flux is removed faster than global diffusion, lead-
ing to increasingly negative toroidal field at the wall. The
magnetic field near the wall therefore becomes perpendicular
to the applied electric field, and the pinch flow associated
with E%B drift increases, as shown in Fig. 1. As this con-
tinues, what started as a flattening of the ,-profile through
additional edge current becomes a pinching of the ,-profile
that concentrates the profile in the core region, as shown in
Fig. 2!a". In contrast, when the axial electric field is simul-
taneously reduced, the direction of the magnetic field at the

wall is relatively constant. Here, the poloidal pulse is able to
drive current without enhanced pinching, as shown in Fig.
2!b".

IV. PPCD WITH A SINGLE MAGNETIC ISLAND

To examine the stabilizing effects of PPCD without the
complication of modal coupling, we first consider a simpli-
fied case where only one tearing perturbation is present. A
configuration with a single saturated island is created from a
tearing unstable Ohmic equilibrium at aspect ratio Lz /2#a
=1 with a safety factor profile !q=2#r,Bz- /Lz,B"-" that is
approximately 2 /3 on axis and slightly greater than 0 at the
wall. The !1,2" mode is linearly unstable, and other modes
are precluded in this set of simulations by evolving the lim-
ited set of axial harmonics 0)n)2. Nonlinearly, it saturates
at amplitude of approximately 10% of the mean-field ampli-
tude, which creates a magnetic island that covers more than

3

FIG. 1. !Color online" Evolution of ,Vr- profile from the symmetric com-
putation with poloidal electric field applied at t=0.

FIG. 2. !Color online" Evolution of “parallel current density,” ,
0(0a,J- · ,B- / ,B-2 from symmetric computations with poloidal electric
field applied at t=0 and !a" fixed toroidal electric-field drive and !b" linearly
decreasing toroidal drive.
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50% of the radial dimension. The ,-profile is flattened in the
vicinity of the rational surface !rs=0.48a", as shown in Fig.
3!a" through the dynamo effect shown in Fig. 3!b". While the
saturated !1,2" fluctuation has a slightly different profile than
the linear eigenfunctions, linear analysis of the mean profile
finds that the !1,2" mode is essentially stable with -! being
orders of magnitude smaller than its value of 38 in the initial
symmetric equilibrium. With respect to the nonlinear power
diagnostics for the n=2 fluctuation, the rate of energy trans-
fer from the mean field, *MF=0.059 !in units of
#a2LzB0

2 /2(0!r" balances the dissipation *D=−0.059, as ex-
pected when no other interaction exists.

Poloidal electric field scaled to remove 20% of the tor-
oidal flux over 0.045!r is applied to modify the saturated
state with an inductive transient. As shown in Fig. 4, a sig-

nificant reduction in *MF occurs promptly within 0.002!r of
applying the pulse at 0.643!r. The dissipation indicated by
*D changes more slowly, and the amplitude of the fluctua-
tion decreases over the duration of the pulse. The change in
parallel current after 0.002!r is isolated to the edge of the
plasma, as shown in Fig. 5. However, after another 0.001!r, a
global change in the ,-profile becomes apparent. This global
change is a result of the loss of dynamo effect as the ampli-
tude of the fluctuation decreases.

With *MF changing so quickly with PPCD and the glo-
bal nature of the !1,2" perturbation, appreciable change in
free energy is unexpected as the initial stabilization mecha-
nism. However, linear analysis of the sequence of profiles
produced in the nonlinear simulation indicates that this is the
case. As shown in Fig. 6, the smooth +c solution of Eq. !7"
for conditions 0.001!r into the pulse is affected by PPCD-
driven current near the wall. The value of +c!a" initially
increases above 0, which indicates a stabilizing influence ac-
cording to the discussion in Sec. II. The subsequent stabili-
zation is similar to the effect of edge current noted in Ref.
19. However, slightly later in our nonlinear simulation, non-

FIG. 3. !Color online" Profiles of !a" parallel current density and !b" dynamo
drive ,J- · ,EF-, where ,EF-=−V

n
*%Bn+c.c., for n=2 before and after satu-

ration for the single-mode computation.

FIG. 4. !Color online" Evolution of *MF and *D for n=2 from the single-
mode computation. The powers are reported in P00#a2LzB0

2 /2(0!r.

FIG. 5. !Color online" Profiles of -,=,!r , t"−,!r , tp", where tp=0.643!r is
the time of pulse application, from the single-mode computation. The m
=1, n=2 resonance is still at rs=0.48a at the times shown in the figure.
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local profile changes due to loss of dynamo begin to occur,
and the gradient in the ,-profile near the rational surface
builds. This leads to the destabilizing influence of +c bending
downward at r=0.4a that is evident in the solution for con-
ditions 0.003!r into the pulse, shown in Fig. 6!a".

In the nonlinear simulation, the !1,2" fluctuation does not
return. The evolution late in the pulse shows that the
q-profile continually decreases across the radius, so the ra-
tional surface of the !1,2" mode moves toward the axis #Fig.
7!a"$. The pinching produces a somewhat hollow parallel
current density profile #Fig. 7!b"$, and the gradient at the
rational surface of the !1,2" becomes positive which is a
stabilizing influence. However, the increasingly concentrated
parallel current density would drive other fluctuations if a
greater range of axial harmonics were included in the simu-
lation. This is considered in the following section.

V. PULSED DRIVE IN MULTIHELICITY CONDITIONS

The single-island evolution considered in the previous
section is a significant simplification of the dynamic condi-
tions present in multihelicity simulations and in experiments.
There are many low-order resonant modes in the RFP, and
their interaction helps transfer energy from unstable modes at
any point in time. The nonlinear coupling also distorts the
shape of the perturbed fields, so interaction with the mean
profile is not entirely described from a quasilinear approach.
In addition, above very low values of S where all but a
dominant helicity is damped,31 the saturated states are
dynamic.20,24 In the range of S-values considered here, the
fluctuations exhibit random behavior where the ordering with
respect to energy content exchanges among a group of
interior-resonant fluctuations !predominantly m=1", as
shown in Fig. 8 for a Lz /2#a=3 simulation with 0)n)42
without PPCD. The mean profiles are not steady in the satu-
rated state, but q!0" does not exceed 0.2 with the axial drive
holding /)1.61 and shallow reversal of F)−0.04.

FIG. 6. !Color online" Traces of the smooth solution to Eq. !7" computed for
the m=1, n=2 mode using profiles from the island-suppression computation
at times shortly after pulse application !t= tp". Details in the edge region are
shown in !b".

FIG. 7. !Color online" Evolution of !a" safety factor q=2#r,Bz- /Lz,B"- and
!b" parallel current density profiles throughout the pulse application in the
island-suppression computation.
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Here, the group of fluctuations most likely to remove
energy from the interior of the profile, the “core” resonant
modes, includes m=1, 6)n)12. A comparison of the *MF
and *MC for individual fluctuations in this group over an
interval of 0.08!r !Fig. 9" shows important properties of the
saturated state. The tendency to transfer energy into each of
these fluctuations is indicated by *MF.0, and *MC10
shows direct loss through nonlinear coupling to other fluc-
tuations. When summed over the group, as in Fig. 10!a", we
see that the coupling loss is comparable to direct dissipation
*D. The sum of *MF, *MC, and *D is small relative to *MF,
but its nonzero value indicates that the saturated state is not
perfectly steady in time. The !1,5" fluctuation is occasionally
resonant in this simulation, but it does not grow to large
amplitude. Thus, the entire 1)n)5 range is dominated by
the resonant m=0 fluctuations, which tend to be driven non-
linearly through coupling among different m=1
fluctuations.20 The 13)n)42 fluctuations tend to dissipate
energy. As shown in Fig. 10!b", this group receives and dis-
sipates as much energy from nonlinear interaction with the
other groups as it does from interaction with the mean field.

With unsteady behavior in the mean profiles and in the
perturbations, it is important to consider several different
states upon which to apply PPCD. States including relatively
shallow and deep reversal, hence relatively low and high
fluctuation amplitude, are labeled numerically in Fig. 11. We
first apply poloidal current drive alone, as in Sec. IV, and
later in combination with decreasing toroidal drive for each
of the states from the standard-RFP simulation. !To distin-
guish the PPCD simulations by initial state, we refer to them
as “Trials” with the numerical labels provided in Fig. 11." In
addition, because standard RFP conditions are not stationary,
we consider the influence of the pulses relative to the evolu-
tion in the RFP simulation without PPCD. The poloidal elec-
tric field removes 25% of the toroidal flux in the scaled in-
terval of 0.045!r in each computation.

In all of the numerical trials, the poloidal pulse leads to
a substantial decrease in the magnetic fluctuation level, as
shown in Fig. 12. The weakest response results in Trial 4,
which begins 0.471!r into the standard-RFP simulation.
Here, the fluctuations start from relatively low amplitude.
Trials 1 and 2 start from relatively high fluctuation levels,
and the effect of PPCD is greatest. Trials 3 and 5 are started
when at least one of the core fluctuations in the standard-
RFP simulation is growing significantly. The fluctuation am-
plitude continues to increase briefly before the poloidal pulse
reverses the trend. Late in each of the poloidal pulse trials,
the fluctuation levels grow rapidly.

The total power flowing from the mean profile into fluc-
tuations, i.e., *MF, begins to decrease within the first 0.001!r
!16!A" into the pulse for each of the five states. This rapid
response in *MF is primarily in the group of core fluctuations
and in the high-n fluctuations, as shown in Figs. 13 and 14.

FIG. 8. !Color online" Evolution of normalized magnetic fluctuation energy,
!2 /#a2LzB0

2"1 +Bn+2dVol, for a subset of the Fourier components of the simu-
lation of standard RFP dynamics.

FIG. 9. !Color online" Evolution of !a" *MF and !b" *MC for the indicated
core-resonant modes from the simulation of RFP dynamics without PPCD.
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For both groups, the *MF powers quickly drop below the
levels in the standard-RFP evolution. Also note that the non-
linear coupling power !*MC" responds more slowly for both
groups. This contributes to the rapid decrease in fluctuation
energy for the core modes. In contrast, interaction with the
mean profile *MF is relatively slow to respond for the m
=0 group !Fig. 15", but the equally significant coupling
power *MC responds almost as quickly as *MF for the core
group. Like the single-island case described in Sec. IV, it is
clear that the pulse affects the fluctuations through profile
changes, but we see that it is an indirect process for the m
=0 fluctuations.

Although the multihelicity states are more dynamic than

the case considered in Sec. IV, linear analysis applied to
sequences of profiles from nonlinear simulations again helps
locate the stabilizing influence. In Trial 5, for example, we
observe that the smooth solution of Eq. !7" is distorted up-
ward near the wall, as shown in Fig. 16 for the !1,7" and
!1,13" helicities. The pulse-induced distortion is small for the
!1,7" helicity relative to the effects of natural profile evolu-
tion. This is typical, but since the conditions are in a satu-
rated state, a small stabilizing influence for the dominant
fluctuations is enough to change the evolution completely.
Also evident in Fig. 16, the effect of the pulse on +c extends
over most of the radius only a few thousands of !r later.
Pinching from loss of dynamo quickly begins to obscure the
initial stabilization mechanism; however, fluctuation sup-
pression continues. We note that the linear computations do

FIG. 10. !Color online" Evolution of *MF, *MC, and *D summed over !a"
interior-resonant fluctuations and !b" other fluctuations from the simulation
of RFP dynamics without PPCD.

FIG. 11. !Color online" Evolution of !a" reversal parameter F and !b" total
magnetic fluctuation energy relative to E00#a2LzB0

2 /2(0 from the simula-
tion of RFP dynamics without PPCD. Numerical labels for five representa-
tive states are shown in the plots.
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not always provide an indication of the suppression, even for
the core modes that are driven by power transfer from the
mean field. We observe that the shape of the largest fluctua-
tion tends to follow the linear eigenmode. However, other
fluctuations tend to be distorted by nonlinear coupling, and
when this distortion is significant as in Trial 1, where the
pulse is applied at a relative peak in fluctuation activity, the
predicted trend from the linear computation may be incorrect
until the coupling power is reduced.

The reduction of fluctuations continues over at least
0.01!r in our poloidal-drive simulations, an order of magni-
tude longer than the timescale of the initial response. As in
the single-island computation, significant profile changes re-
sult from the loss of dynamo effect, and the gradually in-
creasing concentration of parallel current density in the core
begins to destabilize the core-resonant modes. Similar to
computations without fluctuations !Sec. III", removing toroi-
dal flux without a reduction of toroidal drive leads to in-
creased pinching in the core, as shown in the ,-profile evo-
lution for Trial 2 in Fig. 17. With many helicities included in
a simulation, one or more will eventually become unstable,
leading to the large growth of fluctuation energy evident near
the end of the pulse in Fig. 12.

The one-dimensional computations described in Sec. III
demonstrate that reducing the toroidal drive counteracts the
pinching from the poloidal drive. When used together for
each of the five trial states from the standard-RFP simulation,
the growth in fluctuation energy near the end of the pulse is
completely avoided, shown in Fig. 18!a". Unlike the compu-
tations with poloidal drive alone, there is no increase in *MF
near the end of each pulse #Fig. 18!b"$. However, the inter-
action with the mean field is essentially independent of the
toroidal drive over the first 0.01!r of the pulse for each state.
Linear computations again show that the enhanced parallel

current density from the poloidal drive in the edge of the
plasma is responsible for the initial stabilization. The role of
reducing the toroidal drive is then to maintain the low fluc-
tuation level as long as possible. In fact, the system is able to
continue to the dynamo-free state reported in Refs. 7 and 8
for MST. The stochasticity of the magnetic field topology is
dramatically reduced near the end of the pulse, as shown in
Fig. 19 for Trial 4.

VI. CONCLUSIONS

The full dynamics of tearing mode stabilization by elec-
tric field programming involves a combination of effects.
The programming modifies both the energy transfer between
the tearing modes and the mean field, and between different
tearing modes. Our computations show that the effects are
somewhat separated in time. Initially and rapidly, the flow of
energy from the mean field to the dominant core-resonant

FIG. 12. !Color online" Evolution of total fluctuation energy relative to E0
0#a2LzB0

2 /2(0 from each of the PPCD pulse application trials for multihe-
licity conditions.

FIG. 13. !Color online" Evolution of !a" *MF and !b" *MC for the interior-
resonant group 6)n)12 from the multihelicity PPCD trials indicated. The
solid traces show results with poloidal electric-field pulsing, and dashed
traces show results without pulsing for comparison. The first 10% of the
pulse duration is plotted to highlight prompt responses.
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tearing modes is altered. This results from a slight change in
the parallel current profile near the wall, consistent with
trends in linear stability analysis and with motivations9 for
PPCD. While the drive for instability is reduced for the
dominant core fluctuations very shortly after the pulse is ap-
plied, nonlinear coupling !an energy sink for this group" re-
sponds relatively slowly. Thus, powers affecting these fluc-
tuations become unbalanced, so they lose energy.

The induced profile changes that lead to the initial stabi-
lization are small relative to natural oscillations in the
standard-RFP simulation. However, they are large enough to
alter the balance between energy transfer from the profiles,
coupling among fluctuations, and dissipation in a nonlinearly
saturated state. Our simulation that applies PPCD to a single
saturated tearing mode is an illustrative, albeit unrealistic,
example. The saturated mean profile is marginally stable, and
any flattening of the current profile reduces the fluctuation
amplitude. In full RFP simulations, the saturated state with-
out PPCD is not perfectly steady, but it, too, is sensitive to
changes in the drive of the dominant fluctuations. There is

also feedback on the mean profile evolution. When fluctua-
tion amplitudes decrease, the dynamo effect diminishes,
leading to nonlocal profile changes that tend to obscure the
stabilizing effect.

The response for the nonlinearly driven low-n !m=0"
fluctuations is distinct from the core-resonant response. The
important change in input power for this group is in nonlin-
ear coupling, and it occurs after a slight delay while the
core-resonant modes start responding to the profile alter-
ation. The initial effect of PPCD on the m=0 group is there-
fore indirect, as might be expected from their indirect but
important role in the dynamo process.20 While the high-n
fluctuations also receive significant power from nonlinear
coupling, their response to PPCD is closer to that of the
core-resonant modes. Changes in energy transfer from the
mean field are first to alter their power balance, and they
occur rapidly as the pulse is applied.

When comparing computations of poloidal drive with
and without the reduction in toroidal drive, we have empha-
sized the pinching that occurs with poloidal drive alone once
the dynamo effect is eliminated. Consistent with the conclu-
sions of Ref. 12, reducing the toroidal drive keeps the induc-
tive pulse aligned with the edge magnetic field to avoid E

FIG. 14. !Color online" Evolution of !a" *MF and !b" *MC for the high-n
group from the multihelicity PPCD trials indicated.

FIG. 15. !Color online" Evolution of !a" *MF and !b" *MC for the low-n
!m=0" group from the multihelicity PPCD trials indicated.
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%B drift. The transient then tends to drive edge parallel
current throughout the pulse. The importance of lowering the
toroidal drive is also consistent with results obtained with a
localized ad hoc drive that may represent RF or other non-
inductive current.16 It is easier to suppress the core modes
when there is less drive of parallel current density on axis
while the auxiliary drive maintains parallel current density at
larger radii to replace the dynamo.

Future numerical work to understand effects beyond
tearing-mode stabilization, such as the emergence of m=0
fluctuations,12 will likely require evolution of the continuity
equation, pressure-driven effects, and fluctuation-induced
transport. The penetration dynamics of the applied electrical
transient may also change quantitatively when temperature

FIG. 16. !Color online" Traces of the smooth solution to Eq. !7" for !a" m
=1, n=7 and !b" m=1, n=13 for the times from pulse application !t= tp"
indicated in the figure for Trial 5. Solid traces are computed for profiles with
pulse application, and dashed traces are for profiles without pulse
application.

FIG. 17. !Color online" Evolution of parallel current density profile through-
out the pulse in Trial 2 with toroidal drive maintained.

FIG. 18. !Color online" Comparison of !a" total magnetic fluctuation energy
and !b" *MF for the interior-resonant group for multihelicity computations
with poloidal pulsing with and without reduction of the toroidal drive.
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dependent resistivity is added to the model. Finally, resolving
the full nonlinear RFP physics at more experimentally rel-
evant Lundquist numbers is needed to investigate how PPCD
pulses interact with the sawtooth cycle.
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APPENDIX: SCALING OF DENSITY APPROXIMATION
ERRORS

We consider a simple scaling argument to support nu-
merical findings that errors associated with using a fixed
number density become small in the physically relevant limit
of large S-values. First, Faraday’s law combined with the
ideal electric field indicates that over most of the volume
!apart from tearing layers", the strength of magnetic and
flow-velocity perturbations are related by 2B2v,B- /L,
where 2 represents a nonlinear growth rate, and L is a wave-
length that is related to a for global perturbations. If the
growth occurs on a hybrid time for nonlinear tearing activity,
i.e., 221 /!A

'S, then apart from geometric factors, 2
2vA /L'S. We then estimate v2vAB / ,B-'S, so for the error
in the momentum density, i.e., $V$ ·V, the scaling is
$v2 /L2B2 /(0LS. Thus, the error is small relative to the
Lorentz force density !2B2 /(0L" for large values of S. Simi-
larly, the error in energy density, which scales as $v3 /L
2vB2 /(0LS, is small relative to terms in the integrands of

Eqs. !4" and !5" as S becomes large. The same scaling argu-
ments can be applied to the physical inertial terms, and the
fact that they tend to be small relative to Lorentz-force terms
is noted in Ref. 20.
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